Abstract
Phase mixing of a longitudinal Akhiezer-Polovin wave subjected to a small amplitude longitudinal perturbation and its eventual breaking is studied analytically. It is well known that longitudinal Akhiezer-Polovin wave subjected to arbitrarily small longitudinal perturbation breaks via the process of phase mixing at an amplitude well below its limiting amplitude [Verma et al., Phys. Rev. Lett. 108, 125005 (2012)]. We analytically show that the phase mixing time (breaking time, ωpτmix) scales with β (phase velocity) and um(maximum fluid velocity) as ωpτmix∼2πβ3δ[1/um2−1/4], where δ is the amplitude of velocity perturbation and ωp is the non-relativistic plasma frequency. This analytical dependence of phase mixing time on β, um, and δ is further verified using numerical simulations based on Dawson sheet model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.