Abstract

For unidirectional loaded specimens consisting of isotropic-homogeneous ductile materials, an analytical elastoplastic model for the equivalent stress and strain of the representative volume element at the median point were derived based on energy density equivalence and dimensional analysis. Then, a data processing method for various specimen types was proposed to obtain the equivalent stress–strain in real time without presetting the constitutive parameters. Finite element analyses of six specimen types and experiments with four selected specimen types were conducted to verify the method. The results show that the stress–strain curves obtained using this method were consistent with the preset stress–strain curves in the finite element analysis and with the standard tensile results. Using the proposed model and relevant data processing method to obtain the stress–strain curves is effective and, with the theoretical basis, could promote the application of non-tradition and small specimens for obtaining the material mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.