Abstract

The asymmetrical halo and dual-material gate structure is used in the surrounding-gate metal-oxide-semiconductor field effect transistor (MOSFET) to improve the performance. By treating the device as three surrounding-gate MOSFETs connected in series and maintaining current continuity, a comprehensive drain current model is developed for it. The model incorporates not only channel length modulation and impact ionization effects, but also the influence of doping concentration and vertical electric field distributions. It is concluded that the device exhibits increased current drivability and improved hot carrier reliability. The derived analytical model is verified with numerical simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.