Abstract

Analytical device models for disordered organic Schottky diodes and thin-film transistors are presented. The models are developed taking into consideration the strong dependency of the charge mobility on carrier concentration. The drain current expressions are consequently developed in terms of the essential device parameters and applied voltages, to a power exponent of the characteristic temperature associated with the disordered nature of the semiconductor. Upon validation, better agreement of the experimental data is achieved with the disordered model rather than the conventional crystalline equation. Interestingly, under certain conditions, the disordered model reverts back to the conventional model, suggesting the latter to be a special case. Finally, to facilitate the circuit development, alternative design parameters to the mobility term are proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call