Abstract

Numerous compounds in which a paramagnetic LnIII ion is in an exchange interaction with a second spin carrier, such as a transition metal ion or an organic radical, have been described. However, except for GdIII, very little has been reported about the magnitude of the interactions. Indeed, for these ions both the ligand-field effects and the exchange interactions between the magnetic centers become relevant in the same temperature range; this makes the analysis of the magnetic behavior of such compounds more difficult. In this study, quantitative analyses of the thermal variations of the static isothermal initial magnetic susceptibility measured on powdered samples of the [Ln(NO3)3-[organic radical]2] (Ln = DyIII and HoIII) compounds were performed. The ligand-field effects on the Ln ions were taken into account, and the exchange interactions within a molecule were treated exactly within an appropriate Racah formalism. Values of the intramolecular [Ln-aminoxyl radical] exchange parameter have thus been rigorously deduced for both the Dy Kramers and Ho non-Kramers ion-based compounds. Ferromagnetic [Ln-radical] interactions are found for both the Dy and Ho derivatives with J = 8 cm(-1) and J = 4.5 cm(-1), respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.