Abstract

Abstract In this paper, we find analytically the first order solutions of the Bardeen, Cooper and Schrieffer (BCS) Hamiltonian with degenerated single-electron energy levels. The results are compared to the Richardson exact solutions calculated numerically, showing good agreement in the weak interaction limit. Using this first-order solution, we further calculate the number of pairs at the ground state as a function of temperature. In particular, the Bose–Einstein condensation (BEC) temperature is found when the population of ground-state pairs starts growing. This study provides a BEC analysis of the superconductivity for weak coupling regime, which traditionally belongs to the BCS side of the BCS–BEC crossover picture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call