Abstract

This paper presents how to analytically design a high-torque three-phase flux-switching permanent magnet machine with 12 stator poles and 14 rotor poles. Firstly, the machine design parameters are studied addressing on high output torque and its flux distribution is also investigated by finite-element method (FEM) analysis. Then a simplified lumped parameter magnetic circuit model is built up for analyzing design parameters. And a design procedure is also presented. The analytically designed machine is verified by FEM simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.