Abstract

Low-frequency density and temperature oscillations (ω « νj, ωcj, where νj is the collision frequency with neutrals and ωcj is the cyclotron frequency; j = i, e) observed in magnetized radiofrequency-produced plasmas with electron density and temperature gradients across the magnetic field are analysed using a local two-fluid model. This model incorporates the electron energy equation. The resulting dispersion relation permits study of the parameter dependence of the complex angular wave frequency. Instability is found in the case where the election density and temperature gradients have opposite signs. This instability is classified as a low-frequency drift wave, and the criteria for its onset are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.