Abstract

Mathematical models of degradation-relaxation kinetics are considered for jammed thick-film systems composed of screen-printed spinel Cu0.1Ni0.1Co1.6Mn1.2O4 and conductive Ag or Ag-Pd alloys. Structurally intrinsic nanoinhomogeneous ceramics due to Ag and Ag-Pd diffusing agents embedded in a spinel phase environment are shown to define governing kinetics of thermally induced degradation under 170 °C obeying an obvious non-exponential behavior in a negative relative resistance drift. The characteristic stretched-to-compressed exponential crossover is detected for degradation-relaxation kinetics in thick-film systems with conductive contacts made of Ag-Pd and Ag alloys. Under essential migration of a conductive phase, Ag penetrates thick-film spinel ceramics via a considerable two-step diffusing process.

Highlights

  • IntroductionDisordered solids prepared by rapid cooling or quenching from a high-temperature fluid (liquid, melt) state compose a rich class of practically important materials known as jammed systems ranging from foams to soft glasses, dense colloidal gels, concentrated emulsions, clay suspensions, polymer nanocomposites, nanoparticle-filled supercooled liquids, glassy polymer melts, polymer nanocomposites disturbed by internal stress, and even some kinds of metallic glasses, etc. [1,2,3,4,5,6,7]

  • Disordered solids prepared by rapid cooling or quenching from a high-temperature fluid state compose a rich class of practically important materials known as jammed systems ranging from foams to soft glasses, dense colloidal gels, concentrated emulsions, clay suspensions, polymer nanocomposites, nanoparticle-filled supercooled liquids, glassy polymer melts, polymer nanocomposites disturbed by internal stress, and even some kinds of metallic glasses, etc. [1,2,3,4,5,6,7]

  • Cu0.1Ni0.1Co1.6Mn1.2O4 spinel thick films are defined as decisive factors governing non-exponential relaxation kinetics in these nanocomposites revealed in negative relative resistance drift under thermally induced testing at 170 °C

Read more

Summary

Introduction

Disordered solids prepared by rapid cooling or quenching from a high-temperature fluid (liquid, melt) state compose a rich class of practically important materials known as jammed systems ranging from foams to soft glasses, dense colloidal gels, concentrated emulsions, clay suspensions, polymer nanocomposites, nanoparticle-filled supercooled liquids, glassy polymer melts, polymer nanocomposites disturbed by internal stress, and even some kinds of metallic glasses, etc. [1,2,3,4,5,6,7]. These features can be well explained in terms of ultraslow ballistic motion of intrinsic scatters under internal stress frozen at a so-called jamming transition in structurally inhomogeneous systems like colloidal gels [1]. It is noteworthy that many of such systems being in a more uniform but still inhomogeneous state (due to structural evolution under changed chemistry or preparation conditions technology) demonstrate non-exponential kinetics mostly defined as stretchedexponential relaxation (SER), which is slower than simple single-exponential (e.g., sub-exponential) in full accordance the same with Eq (1), but with nonnegative below-unity stretching index (0 < β < 1) [8, 9]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call