Abstract

The input admittance of a converter, connected to other dynamic subsystems, is a useful tool to investigate whether poorly damped oscillations or even unstable conditions might occur at certain frequencies. This is of interest in applications employing the modular multilevel converter (MMC), where the internal dynamics of the converter and the increased number of control loops greatly affect the MMC’s dynamic behaviour, compared to other types of converters. In this paper, the dc-side input admittance of the direct-voltage controlled MMC is derived analytically and verified via small-signal perturbation in a detailed nonlinear time-domain simulation model. The MMC’s input admittance is parametrically studied and compared to the dc-side input admittance of an equivalent two-level converter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.