Abstract

PurposePatient-specific biomedical modeling of the breast is of interest for medical applications such as image registration, image guided procedures and the alignment for biopsy or surgery purposes. The computation of elastic properties is essential to simulate deformations in a realistic way. This study presents an innovative analytical method to compute the elastic modulus and evaluate the elasticity of a breast using magnetic resonance (MRI) images of breast phantoms.MethodsAn analytical method for elasticity computation was developed and subsequently validated on a series of geometric shapes, and on four physical breast phantoms that are supported by a planar frame. This method can compute the elasticity of a shape directly from a set of MRI scans. For comparison, elasticity values were also computed numerically using two different simulation software packages.ResultsApplication of the different methods on the geometric shapes shows that the analytically derived elongation differs from simulated elongation by less than 9% for cylindrical shapes, and up to 18% for other shapes that are also substantially vertically supported by a planar base. For the four physical breast phantoms, the analytically derived elasticity differs from numeric elasticity by 18% on average, which is in accordance with the difference in elongation estimation for the geometric shapes. The analytic method has shown to be multiple orders of magnitude faster than the numerical methods.ConclusionIt can be concluded that the analytical elasticity computation method has good potential to supplement or replace numerical elasticity simulations in gravity-induced deformations, for shapes that are substantially supported by a planar base perpendicular to the gravitational field. The error is manageable, while the calculation procedure takes less than one second as opposed to multiple minutes with numerical methods. The results will be used in the MRI and Ultrasound Robotic Assisted Biopsy (MURAB) project.

Highlights

  • Screening and staging of breast cancer for diagnosis and subsequent treatment is based on medical images acquired on

  • Proper localization of the tumor is essential for biopsy procedures to take tissue samples or to remove the tumor during surgery

  • The position of the patient can vary from prone during MRI scanning to supine position required for breast surgery for example

Read more

Summary

Introduction

Screening and staging of breast cancer for diagnosis and subsequent treatment is based on medical images acquired on. To take full benefit from the previously acquired medical images, the location of the tumor should be aligned from the preoperative imaging into the operating room. The position of the patient can vary from prone during MRI scanning to supine position required for breast surgery for example. During ultrasound scanning and ultrasound-guided biopsy, the patient is returned on her back and additional compression is induced by the ultrasound probe.

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.