Abstract

A decomposed Fourier-series solution to Prandtl’s classical lifting-line theory is used to examine the effects of rigid-body roll and small-angle wing flapping on the lift, induced-drag, and power coefficients developed by a finite wing. This solution shows that, if the flapping rate for any wing is large enough, the mean induced drag averaged over a complete flapping cycle will be negative, that is, the wing flapping produces net induced thrust. For quasi-steady flapping in pure plunging, the solution predicts that wing flapping has no net effect on the mean lift. A significant advantage of this analytical solution over commonly used numerical methods is the utility provided for optimizing wing-flapping cycles. The analytical solution involves five time-dependent functions that could all be optimized to maximize thrust, propulsive efficiency, and/or other performance measures. Results show that, by optimizing only one of these five functions, propulsive efficiencies exceeding 90% can be attained. For the case of an elliptic planform with linear twist, closed-form relations are presented for the decomposed Fourier coefficients and the flapping rate that produces mean induced thrust that balances the mean drag in the absence of wing flapping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call