Abstract

A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued functions in the Laplace domain in the form of general Dirichlet series is used. The final solutions are presented in the form of finite series involving forward and backward travelling wave functions of the d’Alembert type for a finite time interval. This elegant method of Laplace transform inversion used for the special class of problems at hand eliminates the need for finding singularities of the complex-valued functions in the Laplace domain and it does not need utilising the tedious calculations of the more conventional methods which use complex integration on the Bromwich contour and the techniques of residue calculus. Justification for the solutions is then considered. Some illustrations of the exact solutions as time-histories of stress or displacement of different points in the medium due to excitations of arbitrary form or of impulsive nature are presented to further investigate and interpret the mathematical solutions. It is shown via illustrations that the one-dimensional wave motions in multi-layered elastic media are generally of complicated forms and are affected significantly by the changes in the geometrical and mechanical properties of the layers as well as the nature of the excitation functions. The method presented here can readily be extended for three-dimensional problems. It is also particularly useful in seismology and earthquake engineering since the exact time-histories of response in a multi-layered medium due to arbitrary excitations can be obtained as finite sums.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.