Abstract

Admixture mapping, using unrelated individuals from the admixture populations that result from recent mating between members of each parental population, is an efficient approach to localize disease-causing variants that differ in frequency between two or more historically separated populations. Recently, several methods have been proposed to test linkage between a susceptibility gene and a disease locus by using admixture-generated linkage disequilibrium (LD) for each of the genotyped markers. In a genome scan, admixture mapping usually tests 2,000 to 3,000 markers across the genome. Currently, either a very conservative Sidak (or Bonferroni) correction or a very time consuming simulation-based method is used to correct for the multiple tests and evaluate the overall p value. In this report, we propose a computationally efficient analytical approach for correction of the multiple tests and for calculating the overall p value for an admixture genome scan. Except for the Sidak (or Bonferroni) correction, our proposed method is the first analytical approach for correction of the multiple tests and for calculating the overall p value for a genome scan. Our simulation studies show that the proposed method gives correct overall type I error rates for genome scans in all cases, and is much more computationally efficient than simulation-based methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.