Abstract

Luteinizing hormone (LH) administered in pharmacological amounts downregulates Leydig cell steroidogenesis. Whether reversible downregulation of physiological gonadotropin drive operates in vivo is unknown. Most of the analytical models of dose-response functions that have been constructed are biased by the assumption that no downregulation exists. The present study employs a new analytical platform to quantify potential (but not required) pulsatile cycles of LH-testosterone (T) dose-response stimulation, desensitization, and recovery (pulse-by-pulse hysteresis) in 26 healthy men sampled every 10 min for 24 h. A sensitivity-downregulation hysteresis construct predicted marked hysteresis with a median time delay to LH dose-response inflection within individual T pulses of 23 min and with median T pulse onset and recovery LH sensitivities of 1.1 and 0.10 slope unit, respectively (P < 0.001). A potency-downregulation model yielded median estimates of one-half maximally stimulatory LH concentrations (EC(50) values) of 0.66 and 7.5 IU/l for onset and recovery, respectively (P < 0.001). An efficacy-downregulation formulation of hysteresis forecasts median LH efficacies of 20 and 8.3 ng·dl(-1)·min(-1) for onset and offset of T secretory burst, respectively (P = 0.002). Segmentation of the LH-T data by age suggested greater sensitivity, higher EC(50) (increased LH potency), and markedly (2.7-fold) attenuated LH efficacy in older individuals. Each of the three hysteresis models yielded a marked (P < 0.005) reduction in estimated model residual error compared with no hysteresis. In summary, model-based analyses allowing for (but not requiring) reversible pituitary-gonadal effector-response downregulation are consistent with a hypothesis of recurrent, brief cycles of LH-dependent stimulation, desensitization, and recovery of pulsatile T secretion in vivo and an age-associated reduction of LH efficacy. Prospective studies would be required to prove this aging effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.