Abstract
Abstract The cavity haloscope provides a highly sensitive method to search for dark matter axions in the microwave regime. Experimental attempts to enhance the sensitivity have focused on improving major aspects, such as producing strong magnetic fields, increasing cavity quality factors, and achieving lowest possible noise temperatures. Minor details, however, also need to be carefully considered in realistic experimental designs. They are associated with non-uniform magnetic fields over the detection volume, noise propagation under attenuation and temperature gradients, and thermal disequilibrium in the cavity system. We take analytical approaches to these topics and offer optimal treatments for improved performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics G: Nuclear and Particle Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.