Abstract
Data partitioning on heterogeneous HPC platforms is formulated as an optimization problem. The algorithm departs from the communication performance models of the processes representing their speeds and outputs a data tiling that minimizes the communication cost. Traditionally, communication volume is the metric used to guide the partitioning, but such metric is unable to capture the complexities introduced by uneven communication channels and the variety of patterns in the kernel communications. We discuss Analytical Communication Performance Models as a new metric in partitioning algorithms. They have not been considered in the past because of two reasons: prediction inaccuracy and lack of tools to automatically build and solve kernel communication formal expressions. We show how communication performance models fit the specific kernel and platform, and we present results that equal or even improve previous volume-based strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.