Abstract

Liquid chromatography-mass spectrometry has been widely implemented as a powerful tool for providing in-depth characterization of nucleic acid therapeutic modalities, such as anti-sense oligonucleotides and small interfering RNAs (siRNAs). In this study, we developed a generic hydrophilic interaction liquid chromatography (HILIC) hyphenated with tandem mass spectrometry method in the absence of ion-pairing reagents and demonstrated its capability as an attractive and robust alternative for oligonucleotide and siRNA analysis. HILIC separation of mixtures of unmodified and fully phosphorothioate-modified DNA oligonucleotides and their synthetic 3’ exonuclease-digested metabolites were also assessed. High-resolution mass spectrometric (HRMS) analysis was used to determine the deconvoluted masses of oligonucleotide and siRNA standards and their impurities. To enable unbiased sequence characterization with tandem mass spectrometry (MS/MS), we also optimized higher-energy C-trap dissociation (HCD) on improving the sequence coverage of DNA and RNA oligonucleotides. Lastly, we evaluated on-column sensitivity for a phosphorothioate oligonucleotide by performing targeted analysis with either targeted selected ion monitoring (tSIM) or parallel reaction monitoring (PRM). Higher on-column sensitivity of 13 ng, equivalent to 2.0 pmol, of a phosphorothioate oligonucleotide was achieved by tSIM analysis as compared to PRM analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.