Abstract

Rare earth elements (REE) are present in the lanthanide range and are widely used in high-tech and clean technology applications that are predicted to grow significantly in the coming decades. Therefore, there will be a high demand for REE in the future that will impact the needs for development of sensitive and selective methods for determination of REEs such as X-Ray Fluorescence (XRF). Reliability of REEs analysis results depend on analytical capability of XRF instrument’s performance. Analytical capability shows the ability of the instrument to perform sample analysis with high accuracy and precision and proven by validation so that the results obtained are reliable. The aim of this study is to assess the analytical capability of XRF for REEs analysis in samples particularly Lanthanum (La), Cerium (Ce), Neodymium (Nd), Samarium (Sm) and Yttrium (Y), by performing method validation of energy dispersive x-ray spectrometers (ED-XRF). Four measurement conditions that covered the selected elements were defined. Accuracy, precision and detection limits determination were performed by measuring the CRM In House Monazite Sand. The yield of the selected element corresponds to its certified value, with a %recovery between 95.99 to 103.1%. The %RSD values ranging from 0.59 to 5.19%. The detection limits (LLD) of ED-XRF ranged from 8.78 to 67.4 ppm. The results showed the good analytical capability of ED-XRF method for REEs analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.