Abstract

Closed-form analytical expressions for one- and two-electron integrals between Cartesian Gaussians over a finite spherical region of space are developed for use in ab initio molecular scattering calculations. In contrast with some previous approaches, the necessary integrals are formulated solely in terms of finite summations involving standard functions. The molecular integrals evaluated over the finite region of space are computed by subtracting the contributions outside the region from the integrals over all space. The latter integrals can be efficiently and accurately obtained from existing bound-state algorithms. Our approach incorporates molecular scattering calculations into current quantum chemistry programs and facilitates the unification of bound- and continuum-state calculations for both diatomic and polyatomic molecules. Multidimensional Monte Carlo numerical integrations validate the high accuracy of our closed form results for the two-electron integrals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.