Abstract
A purely time-domain approach is proposed for the propagation of vectorial ultrafast beams in free space beyond the paraxial and the slowly varying envelope approximations. As an example of application of this method, we describe in detail the vectorial properties of an ultrafast tightly focused transverse-magnetic (TM(01)) beam, where special attention is given to the longitudinal electric field component. We show that for spot sizes at the waist comparable to the wavelength, the beam diverges more rapidly than expected from paraxial theory. A consequence of this phenomenon is a faster decrease of the amplitude of the longitudinal field away from the waist and a faster evolution of the axial Gouy phase shift in the vicinity of the focus. It has been observed that the phase of the beam has an overall variation of 2pi from z=-infinity to infinity, independent of the beam spot size at the waist and pulse duration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.