Abstract

Liquid-crystalline orders are ubiquitous in membranes and could significantly affect the elastic properties of the self-assembled bilayers. Calculating the free energy of bilayer membranes with different geometries and fitting them to their theoretical expressions allow us to extract the elastic moduli, such as the bending modulus and Gaussian modulus. However, this procedure is time-consuming for liquid-crystalline bilayers. In paper reports a novel method to calculate the elastic moduli of the self-assembled liquid-crystalline bilayers within the self-consistent field theory framework. Based on the asymptotic expansion method, we derive the analytical expression of the elastic moduli, which reduces the computational cost significantly. Numerical simulations illustrate the validity and efficiency of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call