Abstract
The accuracy of conventional superposition or convolution methods for scatter correction in kV-CBCT is usually compromised by the spatial variation of pencil-beam scatter kernel (PBSK) due to finite size, irregular external contour and heterogeneity of the imaged object. This study aims to propose an analytical method to quantify the Compton single scatter (CSS) component of the PBSK, which dominates the spatial distribution of total scatter assuming that multiple scatter can be estimated as a constant background and Rayleigh scatter is the secondary source of scatter. The CSS component of PBSK is the line integration of scatter production by incident primary photons along the beam line followed by the post-scattering attenuation as the scattered photons traverse the object. We propose to separate the object-specific attenuation term from the line integration and equivalently replace it with an average value such that the line integration of scatter production is object independent but only beam specific. We derived a quartic function formula as an approximate solution to the spatial distribution of the unattenuated CSS component of PBSK. The “effective scattering center” is introduced to calculate the average attenuation. The proposed analytical framework to calculate the CSS was evaluated using parameter settings of the On-Board Imager kV-CBCT system and was found to be in high agreement with the reference results. The proposed method shows highly increased computational efficiency compared to conventional analytical calculation methods based on point scattering model. It is also potentially useful for correcting the spatial variant PBSK in adaptive superposition method.
Highlights
In kV cone beam CT, the 2D projection on the planar detector is contaminated by significantly increased scatter due to the large irradiated object volume compared to conventional CT modalities with fan-beam geometry
This study aims to propose an analytical method to quantify the Compton single scatter (CSS) component of the pencil-beam scatter kernel (PBSK), which dominates the spatial distribution of total scatter assuming that multiple scatter can be estimated as a constant background and Rayleigh scatter is the secondary source of scatter
We propose an analytical model to calculate the spatial distribution dominant CSS component of the PBSK aiming to improve the computational accuracy of the PBSK based superposition method for scatter correction
Summary
In kV cone beam CT, the 2D projection on the planar detector is contaminated by significantly increased scatter due to the large irradiated object volume compared to conventional CT modalities with fan-beam geometry. The X-ray scatter consists of any secondary photons other than the incident primary photons and is mainly produced by direct photon interactions with medium, including Compton (incoherent) and Rayleigh (coherent) scattering. In Compton scattering, an incident photon transfers part of its energy to an outer shell atomic electron and is deflected from its incident direction. In Rayleigh scattering, the incident photon only changes its direction with no energy transferred. In kV-CBCT, the distribution of multiple scatter is generally smooth and can be approximately calculated as a constant background [2] [5] [6] [7] [8]. As Compton scattering dominates photon interactions in kV-CBCT, in general the spatial distribution of scatter is mainly determined by the Compton single scatter (CSS) component [2] [6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Medical Physics, Clinical Engineering and Radiation Oncology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.