Abstract

We present a simple method for calculation of diffraction effects in a beam passing an aperture. It follows the well-known approach of Miyamoto and Wolf, but is simpler and does not lead to singularities. It is thus shown that in the near-field region, i.e. at short propagation distances, most results depend on values of the beam’s field at the aperture’s boundaries, making it possible to derive diffraction effects in the form of a simple contour integral over the boundaries. For a uniform, i.e. plane-wave incident beam, the contour integral predicts the diffraction effects exactly. Comparisons of the analytical method and full numerical solutions demonstrate highly accurate agreement between them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.