Abstract

An analytical bond-order potential based on Tersoff-Brenner model for Sn is developed using the Levenberg-Marquardt optimization algorithm with the first-principles calculations on fundamental physical properties of five configurations of Sn, and with the available experimental results. The potential is used to determine the crystal structures, binding energies, bond distances and strengths, and bulk modulus of the β-Sn and body-centered-tetragonal Sn, and to predict the changes in free energy of the α and β phase with temperature. Result indicate that the calculated basic properties of the phases and the predicted transition temperature from α to β phase are in good agreement with the reported experimental data. The proposed interatomic potential is short-ranged and quickly evaluated, and it could be used to distinguish covalent bond from metallic bond in the phases, so it is very useful for large-scale molecular dynamics simulations of Sn-based solder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.