Abstract

This work is motivated by the recent interest in using strain gradient theory to model the chiral behavior of elastic materials. In this paper, we derive a linear strain gradient theory for Cosserat thermoelastic materials according to the three models (types I, II and III) of Green-Naghdi theory. Models II and III permit propagation of thermal waves at finite speeds, while model I coincides with the classical Fourier’s law. The thermal field is influenced by the displacement and the microrotation fields and by some additional parameters that describe the chiral behavior. We prove the well-posedness for the three models and the asymptotic behavior for models I and III by the semigroup theory of linear operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.