Abstract
The bound-state solutions of the Schrödinger equation for a hyperbolic potential with the centrifugal term are presented approximately. It is shown that the solutions can be expressed by the hypergeometric function 2F1(a, b; c; z). To show the accuracy of our results, we calculate the energy levels numerically for arbitrary quantum numbers n and l. It is found that the results are in good agreement with those obtained by other methods for short-range potential. Two special cases for l = 0 and σ = 1 are also studied briefly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.