Abstract

The Fokker–Planck equation is a key ingredient of many models in physics, and related subjects, and arises in a diverse array of settings. Analytical solutions are limited to special cases, and resorting to numerical simulation is often the only route available; in high dimensions, or for parametric studies, this can become unwieldy. Using asymptotic techniques, that draw upon the known Ornstein–Uhlenbeck (OU) case, we consider a mean-reverting system and obtain its representation as a product of terms, representing short-term, long-term, and medium-term behaviour. A further reduction yields a simple explicit formula, both intuitive in terms of its physical origin and fast to evaluate. We illustrate a breadth of cases, some of which are ‘far’ from the OU model, such as double-well potentials, and even then, perhaps surprisingly, the approximation still gives very good results when compared with numerical simulations. Both one- and two-dimensional examples are considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call