Abstract

Currently, there are available a few simple analytical approximations to the complex effective refractive index that may be used for nanofluids. Namely, the Maxwell Garnett mixing formula with scattering corrections, the Maxell Garnett Mie approximation, the Foldy-Lax approximation and the small particle limit of the quasi-crystalline approximation. These approximations are valid either for very small nanoparticles (below a few nanometers in radius) or for very dilute nanofluids (below about 1% in particles' volume fractions) and therefore, do not cover the whole domain of particle suspensions referred to as nanofluids. Here we propose a new simple analytical approximation based on local field corrections to the Foldy-Lax approximation. The new mixing formula coincides with the mentioned approximations when they are expected to be valid and provides physically sound predictions when the mentioned approximations are no longer valid, within the realm of nanofluids. We compare predictions of the analytical approximations considered in this work with experimental data published earlier for nanofluids of polystyrene in water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call