Abstract

Initial–boundary value problems for a linear diffusion–advection–reaction equation are considered, with general nonhomogeneous linear boundary conditions and general linear nonlocal boundary conditions. Analytical solutions are obtained using an embedding method. The solutions are expressed in terms of time‐varying functions that satisfy coupled linear Volterra integral equations of the first kind. A boundary element method is applied to numerically solve the integral equations. Three examples are given to demonstrate the accuracy of the numerical solutions when compared with the analytical solutions. The embedding method is applicable to problems with bounded and unbounded spatial domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.