Abstract

Wear mechanisms, as adhesion, abrasion, fatigue and tribochemical wear, are complex in their physical and chemical nature. A theoretical description and prediction of wear are in most cases still far from reality. It is, therefore, important to use test rigs before a practical application of a given material combination under tribological loading. On the other hand, model equations can be helpful for wear description, if a single wear mechanism is dominant. Under oscillating and continuous sliding contact conditions, equations for wear calculation are presented to describe running-in and stationary wear behaviour of metals and ceramics. By using shear energy density, real area of contact, flash temperature, activation energy and numerical simulations with the method of movable cellular automata (MCA), wear data were calculated and compared to experimental laboratory results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.