Abstract
A solid-state thermoelectric device uses the Peltier effect to create a heat flux differential between the junctions of two different types of materials. By applying electrical energy, a thermoelectric cooler can transport heat from the cool side of the device to the heat sink. The purpose of this paper is to develop an analytical tool that can be readily implemented by design engineers in the field of thermoelectric cooler technology. The relatively complicated partial differential equation governing energy transport within the semiconductor elements is reduced to a conventional heat diffusion equation with the aid of a special function and then solved analytically using the integral-transformation technique. The temperature distributions within the semiconductor elements, the Seebeck effect, the thermal conductivity, the cooling load, and the system coefficient of performance for a thermoelectric cooler are determined and analyzed. The transient behavior of a thermoelectric cooler can be used as an optimization tool for various design configurations in meeting specific packaging requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.