Abstract

AbstractSimultaneous detection of ascorbic (AA) and uric acid (UA) is developed at pyramidal (NP), rodlike (NR), and spherical (NS) gold nanostructures, due to their high electrocatalytic activities toward the oxidation of AA and UA. Unlike at bare gold electrode, the fouling resulted from the oxidized product of AA is eliminated at the nanostructured gold electrode. The voltammetric signals of AA and UA are completely separated with a potential difference of 216 mV, 158 mV and 195 mV, respectively, at the pyramidal, rodlike, and spherical gold surfaces. The experimental results reveal that solution pH effects the peak separation of AA and UA, acidic solution is more favorable for the simultaneous determination of AA and UA than neutral one, than alkaline one. The coexistence of a large excess of AA does not interfere with the voltammetric sensing of UA, vice versa. All the three kinds of nanostructured gold electrodes show excellent sensitivity, stability, selectivity, low detection limit, quick response and wide linear range in the repeated detection of AA and UA. The practical utility of the present nanostructured gold electrodes is demonstrating by determining the concentration of AA in fruit juice and UA in urine sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call