Abstract

A sheet of graphene under magnetic bias attains anisotropic surface conductivity, opening the door for realizing compact devices such as Faraday rotators, isolators and circulators. In this paper, an accurate and analytical method is proposed for a periodic array of graphene ribbons under magnetic bias. The method is based on integral equations governing the induced surface currents on the coplanar array of graphene ribbons. For subwavelength size ribbons subjected to an incident plane wave, the current distribution is derived leading to analytical expressions for the reflection/transmission coefficients. The results obtained are in excellent agreement with full-wave simulations and predict resonant spectral effects that cannot be accounted for by existing semi-analytical methods. Finally, we extract an analytical, closed form solution for the Faraday rotation of magnetically-biased graphene ribbons. In contrast to previous studies, this paper presents a fast, precise and reliable technique for analyzing magnetically-biased array of graphene ribbons, which are one of the most popular graphene-based structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call