Abstract

We consider a tight-binding model on the regular honeycomb lattice with uncorrelated on-site disorder. We use two independent methods (recursive Green's function and self-consistent Born approximation) to extract the scattering mean-free path, the scattering mean-free time, the density of states, and the localization length as a function of the disorder strength. The two methods give excellent quantitative agreement for these single-particle properties. Furthermore, a finite-size scaling analysis reveals that all localization lengths for different lattice sizes and different energies (including the energy at the Dirac points) collapse onto a single curve, in agreement with the one-parameter scaling theory of localization. The predictions of the self-consistent theory of localization however fail to quantitatively reproduce these numerically extracted localization lengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.