Abstract

We study the noisy voter model using a specific non-linear dependence of the rates that takes into account collective interaction between individuals. The resulting model is solved exactly under the all-to-all coupling configuration and approximately in some random network environments. In the all-to-all setup, we find that the non-linear interactions induce bona fide phase transitions that, contrary to the linear version of the model, survive in the thermodynamic limit. The main effect of the complex network is to shift the transition lines and modify the finite-size dependence, a modification that can be captured with the introduction of an effective system size that decreases with the degree heterogeneity of the network. While a non-trivial finite-size dependence of the moments of the probability distribution is derived from our treatment, mean-field exponents are nevertheless obtained in the thermodynamic limit. These theoretical predictions are well confirmed by numerical simulations of the stochastic process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.