Abstract
The effects of radial electric field on charged particle motion and transport in the toroidal magnetic system have been studied both analytically and numerically. The effects of radial electric field on particle orbits are examined, allowing for the relatively large and strongly sheared field observed in some experiments. It is found that ion radial mobility due to the combined effects of radial electric field and charge exchange collisions can dramatically affect the ion transport and orbit loss near the tokamak edge. These properties may help understand the formation of transport barrier near the tokamak plasma edge during high confinement mode (H-mode) discharge and explain the asymmetry between bias voltage and confinement in biased-electrode-induced H-mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.