Abstract
In this paper, analytical and numerical solutions of time and space fractional advection-diffusion-reaction equations are found. In general, by using Lie transformations, it is possible to reduce the fractional partial differential equations into fractional ordinary differential equations, if the symmetries admitted by target equations allow to determine the Lie transformations. In the case of the time and space fractional advection–diffusion–reaction model, the Lie symmetries do not lead to reduce the equation into fractional ordinary one. So we propose an alternative strategy to find the analytical and numerical solutions starting from the analytical and numerical results recently obtained by the authors for the time fractional advection-diffusion-reaction equation and for the space fractional advection–diffusion–reaction equation, separately, by using the Lie symmetries. The numerical results prove the efficiency and the applicability of the proposed procedure that results to be, for its high precision, a good tool to find solutions of a wide class of problems involving the fractional differential equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.