Abstract
AbstractMany gravity driven flows can be modelled as homogeneous layers of inviscid fluid with a hydrostatic pressure distribution. There are examples throughout oceanography, meteorology, and many engineering applications, yet there are areas which require further investigation. Analytical and numerical results for two-layer shallow-water formulations of time dependent gravity currents travelling in one spatial dimension are presented. Model equations for three physical limits are developed from the hydraulic equations, and numerical solutions are produced using a relaxation scheme for conservation laws developed recently by S. Jin and X. Zin [6]. Hyperbolicity of the model equations is examined in conjunction with the stability Froude number, and shock formation at the interface of the two layers is investigated using the theory of weakly nonlinear hyperbolic waves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of the Australian Mathematical Society. Series B. Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.