Abstract

Transient soft-x-ray lasers are generated from a solid target irradiated by two intense pump laser pulses. Amplification is achieved in the plasma column thus produced. Knowledge of the beam propagation is vital for the intensity and quality of the x-ray laser output. In this paper, x-ray laser beam propagation in transient plasmas is studied both analytically and numerically. General one-dimensional formulas are developed for beams in electron density gradient media, including the exponential profile that describes the plasma created from a solid target. The gradient is predicted to limit the amplification length within the maximum gain to <2.6 mm in standard experiments. The result given by the analytical model is confirmed by numerical ray tracing of x-ray laser beams within an amplifying medium as it is defined by the full numerical simulation results of the ehybrid code.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call