Abstract

In this paper, analytical and numerical models were developed to simulate the perforation of ceramic-composite targets by small-caliber projectiles. The modified Bernoulli equation has been implemented in a new analytical model to simulate the interaction between projectile and ceramic tile and an energy formulation based on the wave propagation theory has been adopted to describe energy absorption of the composite backing. The numerical model, developed with the software LS-DYNA, is based on a full-Lagrangian finite-element analysis. Both models yielded good agreement with the performed impact tests on pure alumina single tile and on multilayer Al2O3-Kevlar 29/epoxy using actual 7.62 mm NATO Ball projectile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.