Abstract
Bond behavior is a key factor in the engineering application of composite material. This study focuses on the constitutive model of the bond behavior between high-strength stainless steel strand mesh and Engineered Cementitious Composites (ECC). In this paper, the effects of strand diameter, bond length and transverse steel strand spacing on bond behavior were studied based on 51 direct pullout tests. Experimental results showed that the high-strength stainless steel strand mesh provided specimens an excellent ductility. Based on the experimental data, the existing bond–slip model was revised using the theory of damage mechanics, which fully considered the influence of the steel strand diameter on the initial tangent stiffness of the bond–slip curve. The results of the model verification analysis show that errors are within 10% for most parameters of the bond–slip model proposed, especially in the ascending section, the errors are within 5%, indicating that the calculated results using the revised model are in good agreement with the test results. In addition, the revised model was applied to the finite element analysis by using the software ABAQUS to simulate the pullout test, in which the spring-2 nonlinear spring element was used to stimulate the bond behavior between steel strand meshes and ECC. The simulation results show that the numerical analysis fits the experimental result well, which further verifies the accuracy of the model and the feasibility and applicability of the numerical analysis method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.