Abstract

At the onset of fracture in materials with process zones, the fracture resistance, or R curve, rises as the process zone develops. After process zone development, crack propagation proceeds by steady state growth. By considering J integral contours inside and outside the process zone, the available energy can be partitioned into crack tip energy release rate and process zone energy. To model the rising R curve, however, required assumptions about damage mechanisms in the process zone and partitioning of its energy into released and recoverable energy. By considering process zones that are elastic fiber-bridging zones with softening regions caused by fiber breakage or damage, equations for rising R curves were derived as a function of crack tip toughness and bridging zone mechanics. The new methods were implemented into the Material Point Method for generalized numerical crack propagation simulations with bridging zones. The simulation method includes pure fracture mechanics and pure cohesive zone models as extreme special cases. The most realistic simulations for many materials will likely fall between these two extremes. The results guided comments on interpretation of experimental R curves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call