Abstract
Abstract The current study theoretically and computationally analyses the viscoelastic Sisko fluids during the non-isothermal rollover web phenomenon. The mathematical modeling produces a system of partial differential equations, which we further simplify into ordinary differential equations through appropriate transformations. We have formulated the problem based on the lubrication approximation theory. The solution has been obtained with the perturbation method, and the outcomes are found in mathematical, tabular, and graphical forms that highlight the influence of pertinent parameters on velocity profiles, pressure gradients, flow rates per unit width, Nusselt number, pressure profile, temperature distributions, and other significant engineering quantities. Further, A comparative analysis between analytic and numerical solutions, utilizing the middefer method in the Maple environment, demonstrates reasonable agreement. Also, we observe that the fluid parameter significantly influences both velocity and temperature profiles. Moreover, the determination of a separation point 2.5000, accompanied by the observation of a maximum coating thickness of 0.6960. The enhancement in fluid heat transfer rate is approximately 5% compared to non-Newtonian fluid parameter values, with potential for further improvement by increasing the non-Newtonian parameter values. This comprehensive investigation offers valuable insights for practical implementation and future scholarly endeavors, with zero-order findings showcasing enhanced precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.