Abstract

This paper investigates the inhomogeneous version of the pantograph equation. The current model includes the exponential function as the inhomogeneous part of the pantograph equation. The Maclaurin series expansion (MSE) is a well-known standard method for solving initial value problems; it may be easier than any other approaches. Moreover, the MSE can be used in a straightforward manner in contrast to the other analytical methods. Thus, the MSE is extended in this paper to treat the inhomogeneous pantograph equation. The solution is obtained in a closed series form with an explicit formula for the series coefficients and the convergence of the series is proved. Also, the analytic solutions of some models in the literature are recovered as special cases of the present work. The accuracy of the results is examined through several comparisons with the available exact solutions of some classes in the relevant literature. Finally, the residuals are calculated and then used to validate the accuracy of the present approximations for some classes which have no exact solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.