Abstract

The aim of this work is to provide new insights on the dynamics associated to the resonances which arise as a consequence of the coupling of the effect due to the oblateness of the Earth and the Solar Radiation Pressure (SRP) effect for an uncontrolled object with moderate to high area-to-mass ratio. Analytical estimates for the location of the resulting resonant equilibrium points are provided, together with formulas to compute the maximum amplitude of the corresponding variation in the eccentricity, as a function of the initial conditions of the object and of its area-to-mass ratio. The period of the variations of the eccentricity and inclination due to such resonances is estimated using classical formulas. A classification based on the strength of the SRP resonances is provided. The estimates presented in the paper are validated using numerical tools, including the use of Fast Lyapunov Indicators to draw phase portraits and bifurcation diagrams. Many FLI maps depicting the location and overlapping of SRP resonances are presented. The results from this paper suggest that SRP resonances could be modeled in the context of either the Extended Fundamental Model by Breiter (1999) or the Second Fundamental Model by Henrard and Lemaitre (1983).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.