Abstract

Subject . Analysis of applicability and effectiveness of various complexity level models in design of reinforcement of stretch elements by gluing on their surface high-strength fiber reinforced polymers (HSFRP). Research objectives. Determine the necessary level of complexity of the calculation model based on the comparison of calculation results obtained on models of various complexity within the elastic behavior of the reinforced element and analysis of features of its elastoplastic behavior in case of its overload. Materials and methods. Few relatively simple variants of HSFRP-reinforcement structures with application of four Finite Element Method (FEM) simulation models of varying complexity and an analytic approach. Plane and spatial Finite Element (FE) models with PC LIRA (SCAD) and FEMAP (NASTRAN) apply in considered series of numerical experiments. Comparative analysis of results of elastic FEM calculation based on various FE models with the results obtained using analytical expressions. A number of diagrams and tables represent the results of calculations. Nonlinear FEM analysis reveals some features of the reinforced elements response under extreme loads. Results. The effect of various factors on the bonded joint behavior observed, the equations and formulae for the analysis and design are applied, the analytical approach based numerical results well correspond with those obtained using FEM. A number of nonlinear FEM calculations discover some features of elastic-plastic response of joints. Conclusions. All the considered here FE models within the limits of elastic design are quite compatible mutually and with an approximate analytical approach as well. The least timeand effort-expensive for the stage of preliminary assessment of the various parameters effect on the glued joint behavior in the elastic design of the stretched elements reinforcement is an analytical approach allowing instantaneously obtain the resulting main components of stresses and forces in the components of joint to scroll through parameter values. FEM simulation for elastic calculation is expedient for verification of results. The simplified plain FEM simulation seems to be quite reliable here. In inelastic state of the reinforced element material yet, the features of its stress-strain distribution not observable in the elastic stage of its loading and requiring special attention and refined FEM simulation may dominate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.