Abstract
Ultrasonic vibration assisted turning (UAT) is a machining method for creating precision surfaces that because of advantages such as increased tool life, decreased cutting force, high surface quality, and increasing the machinability of hard cutting materials is widely used. In this method, optimal choice of machining parameters has a significant effect on the obtained surface texture. This paper examines the parameters that influence surface texture in the UAT. Therefore, an algorithm was provided to simulate surface textures in the process of ultrasonic vibration assisted face-turning in three modes of one-dimensional, two-dimensional and three-dimensional. To validate this algorithm, experimental tests were performed on Al7075-T6. Comparing the results of the algorithm and experimental tests shows that the surface texture resulted from simulation algorithm is well-matched with the results of experimental tests. Finally, the effect of machining parameters of cutting speed and feed rate are investigated in a variety of vibration modes applied to the tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.