Abstract

The structures in engineering can be simplified into elastic beams with concentrated masses and elastic spring supports. Studying the law of vibration of the beams can be a help in guiding its design and avoiding resonance. Based on the Laplace transform method, the mode shape functions and the frequency equations of the beams in the typical boundary conditions are derived. A cantilever beam with a lumped mass and a spring is selected to obtain its natural frequencies and mode shape functions. An experiment was conducted in order to get the modal parameters of the beam based on the NExT-ERA method. By comparing the analytical and experimental results, the effects of the locations of the mass and spring on the modal parameter are discussed. The variation of the natural frequencies was obtained with the changing stiffness coefficient and mass coefficient, respectively. The findings provide a reference for the vibration analysis methods and the lumped parameters layout design of elastic beams used in engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call