Abstract
In this paper, low-velocity impact response and damage of composite laminates under in-plane loads are analytically and experimentally investigated. The authors recently proposed a modified displacement field of plate theory, considering the effect of initially loaded in-plane strain, and used a finite element program to analyze the structural behavior of the composite laminate. In this study, the program is upgraded to account for the structural damping effect of the laminate. A pendulum type impact test system and an in-plane loading fixture are constructed for the experimental study. The analytical and experimental impact behaviors are compared at different impact energy levels for cases with an initial in-plane tensile load and a compressive load, as well as cases without the initial in-plane load. The results show good correspondence between the analytical and experimental impact force histories. The effect of the initial in-plane load reduces for higher impact energies. The numerical estimation of the damaged area is in good agreement with the results from C-scanning experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.